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UPPER SANTA ANA RIVER INTEGRATED MODEL 

 
SUMMARY REPORT 

 
 

 EXECUTIVE SUMMARY 

1.1 Introduction 

GEOSCIENCE Support Services, Inc. (GEOSCIENCE) was tasked with constructing a groundwater flow model 
for the Upper Santa Ana Valley Groundwater Basin by integrating existing groundwater and surface water 
models. This model, known as the Integrated SAR Model, was used as a management tool to determine 
what factors contribute to reduced streamflow in the SAR, and to evaluate potential effects from 
proposed projects on streamflow and groundwater levels across the basin, including Upper SAR Habitat 
Conservation Plan (HCP) “Covered Activities”. 
 
The development of the Integrated SAR Model represents a cooperative technical effort involving: 
 

• Representatives of participating parties, including San Bernardino Valley Municipal Water District 
(Valley District), Western Municipal Water District (Western), Inland Empire Utilities Agency 
(IEUA), Orange County Water District (OCWD), City of Riverside Public Utilities (RPU), United 
States Geological Survey (USGS), United States Fish and Wildlife Survey (USFWS), and the 
California department of Fish and Wildlife (CDFW); 

• Representatives of participating parties’ consultants Aspen Environmental Group (Aspen), 
GEOSCIENCE, Leidos, and Numeric Solutions; 

• Technical advisors representing the Balleau Groundwater, Inc. (BGW), Chino Basin Watermaster, 
ICF, the Santa Ana Regional Water Quality Control Board, the Santa Ana Watershed Project 
Authority (SAWPA), University of California, Riverside (UCR), U.S. Army Corps of Engineers 
(USACE), and Wildermuth Environmental, Inc. (WEI). 

 
Collectively, this group represents the Technical Advisory Committee (TAC). Collaboration by these 
representatives to develop the Integrated SAR Model was achieved through participation at project 
conference calls, model workshops, and by reviewing and commenting on draft technical memoranda and 
model files. During the course of this project, individual tasks were summarized in several technical 
memorandums (TMs). Each draft TM was submitted to the Technical Advisory Committee (TAC) for 
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comment and review. This Summary Report incorporates the material from all previously issued TMs and 
TAC comments. 
 
Previous groundwater models that were used as a basis for the Integrated SAR Model are the: 
 

• Yucaipa Groundwater Model (GEOSCIENCE, 2017), 

• Refined Basin Flow Model/Newmark Groundwater Flow Model (RBFM/NGFM) for the SBBA 
(GEOSCIENCE, 2009; GEOSCIENCE and Stantec, in progress), 

• Rialto-Colton Groundwater Model (GEOSCIENCE, 2015), 

• Riverside-Arlington Groundwater Model (WRIME, 2010), and 

• Chino Basin Model (WEI, 2015; reconstructed by GEOSCIENCE for this project).  
 
The process of updating and integrating the existing models was summarized in TM No. 1: Model 
Integration (GEOSCIENCE, 2018a) and is included here as Section 5.0. Since model files were not available 
for the WEI Chino Basin Model, GEOSCIENCE constructed a separate version of the model based on the 
approach and data presented in WEI’s modeling report (2015). This is discussed in Section 6.0.  
 
Existing watershed models include the: 
 

• Wasteload Allocation Model (WEI, 2009), 

• SBBA Riverside Basin Watershed Model (GEOSCIENCE, 2013), 

• Yucaipa Watershed Model (GEOSCIENCE, 2014), and 

• Wasteload Allocation Model Update (GEOSCIENCE, 2019e). 
 
A watershed model for the Upper SAR Watershed was developed and calibrated from 1966 through 2016 
to simulate runoff generated within the watershed and quantify runoff for the Integrated SAR Model 
(Section 7.0). 
 
Development and calibration of the Integrated SAR Model is discussed in Sections 8.0 and 9.0, 
respectively. Following model calibration, scenario runs were developed and conducted to assess the 
hydrologic response of the Upper SAR to various project activities, as presented in Section 10.0. Sections 
11.0 and 12.0 of this Summary Report discuss uses and limitations of the Integrated SAR Model, as well 
as future work. 
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1.2 Conceptual Model of the Integrated SAR Model 

The Upper Santa Ana Valley Groundwater Basin incorporates the Yucaipa, SBBA, Rialto-Colton, Riverside-
Arlington, Chino, and Temescal Groundwater Basins. In general, the conceptual geologic models for the 
six groundwater basins within the Upper Santa Ana Valley Groundwater Basin are similar with respect to 
the geologic materials present, with minor variations. With respect to geologic history, the Yucaipa, SBBA, 
and Rialto-Colton basins share similar and overlapping depositional histories due to local tectonics 
associated with movement along the San Jacinto, San Andreas, and associated faults. Likewise, the 
Riverside-Arlington, Temescal, and Chino Basins share similar geologic histories. The geologic conceptual 
model forms the basis for the hydrogeologic conceptual model, which in turn informed the construction 
of the numerical Integrated SAR Model for the simulation of groundwater flow through the geologic 
formations. 
 
In order to integrate the existing groundwater models, it was necessary to review the individual 
conceptual models and identify similarities and differences. It was also necessary to develop an approach 
for extending model layers – representing geologic units – across existing model boundaries. The 
hydrogeologic conceptual model provided a framework for identifying geologic units within the Integrated 
SAR Model domain, identifying sources of inflow and outflow to the groundwater systems, and correlating 
hydrogeologic units (model layers) between groundwater basins. The hydrogeologic conceptual model of 
the Integrated SAR Model domain, in combination with the three-dimensional (3-D) lithologic model that 
was developed for the Integrated SAR Model area, was used to delineate and assign model layers. 
 

1.3 Update of Existing Groundwater Models 

Model integration involved updating the existing groundwater flow models (i.e., Yucaipa, SBBA, Rialto-
Colton, and Riverside-Arlington Models) with the appropriate resolution, or cell size, and orientation to 
match that of the Integrated SAR Model. The existing groundwater flow models were also updated so that 
the hydrologic data covered the model calibration period from January 1966 through December 2016. To 
complete the model integration process, the unified model layers were applied to the updated 
groundwater flow models. The individual models were then rerun within the Integrated SAR Model grid 
to ensure the updated results were consistent with the original existing models. Next, the specified 
underflow boundary conditions in the individual models were removed and the Integrated SAR Model 
was run and calibrated without specific underflow across basin boundaries (underflow inflow and outflow 
across existing model boundaries are simulated by the Integrated SAR Model). 
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1.4 Construction and Calibration of the Chino Basin Model 

In the Chino Basin area of the Integrated SAR Model, existing model files were unavailable. Therefore, a 
separate version of the Chino Basin Model was constructed and calibrated in the Integrated SAR Model 
grid. Construction was initially based on available data presented in WEI’s model report (2015), but the 
Chino Basin Model presented herein does differ from the WEI model. Some model parameters and fluxes 
were developed using different approaches and model parameters were refined through model 
calibration.  
 

1.4.1 Chino Basin Model Initial Calibration Results 

During the Chino Basin Model calibration, model parameters were manually adjusted within acceptable 
limits until model-generated water levels match historical water level measurements at wells across the 
model area, thereby reducing residual error. The Chino Basin Model was calibrated using this industry 
standard “history matching” technique for the period from January 1966 through December 2016. The 
calibration process used 23,086 water level measurements from 115 calibration target wells from which 
to match model generated head values against the measured values. These target water levels were later 
down-sampled to monthly measurement intervals during calibration of the Integrated SAR Model based 
on feedback from the TAC. Aquifer parameters varied during the model calibration included horizontal 
and vertical hydraulic conductivity, specific yield, specific storage, horizontal flow barrier conductance, 
and streambed conductance.  
 

1.5 Upper Santa Ana River Watershed Model 

In order to simulate the streamflow more accurately, runoff generated from precipitation within the 
Upper Santa Ana Valley Groundwater Basin was calculated using a watershed model, which was then 
included in the Streamflow Package for the Integrated SAR Model. The Upper SAR Watershed Model was 
developed for the Santa Ana Watershed Project Authority (SAWPA) during the SAR Waste Load Allocation 
Model (WLAM) Update using the Hydrologic Simulation Program - Fortran (HSPF) computer code 
(GEOSCIENCE, 2019e). This watershed model was calibrated for the period from October 1, 2006 through 
September 30, 2016 (Water Year 2007 through 2016) using 2012 land use. For the Integrated SAR Model, 
the watershed model calibration period was expanded to include the period from January 1966 through 
December 2016 with additional land use maps from 1963, 1984, 1994, and 2005. 
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1.5.1 Watershed Model Calibration 

The model was calibrated against measured streamflow for the period from January 1, 1966 through 
December 31, 2016. Streamflow data from three major gaging stations along the SAR were used during 
the calibration process, including: 
 

• Santa Ana River at E Street, 

• Santa Ana River at MWD Crossing, and 

• Santa Ana River into Prado Dam. 
 
The results of the Upper SAR Watershed Model calibration are summarized in the following tables. 
 

Table 1-1. Summary of Upper SAR Watershed Model Results – 
Daily Simulated Streamflow Performance 

Gaging Station 
Avg. Observed 

Flow 
[cfs] 

Avg. Model-
Simulated Flow 

[cfs] 

Mean Residual 
 

[cfs] 

Mean Residual 
as % of Avg. 

Observed Flow 
R2 Performance 

Santa Ana River at 
E Street 75.4 82.7 -8.2 -11% 0.78 Good 

Santa Ana River at 
MWD Crossing 130.5 133.3 2.1 2% 0.74 Good 

Santa Ana River 
into Prado Dam 273.0 262.7 10.3 4% 0.85 Very Good 

 
Table 1-2. Summary of Upper SAR Watershed Model Results – 

Monthly Simulated Streamflow Performance 

Gaging Station 
Avg. Observed 

Flow 
[cfs] 

Avg. Model-
Simulated Flow 

[cfs] 

Mean Residual 
 

[cfs] 

Mean Residual 
as % of Avg. 

Observed Flow 
R2 Performance 

Santa Ana River at 
E Street 75.9 83.3 -8.4 -11% 0.84 Good 

Santa Ana River at 
MWD Crossing 130.5 134.2 1.8 1% 0.85 Very Good 

Santa Ana River 
into Prado Dam 274.7 264.3 10.4 4% 0.94 Very Good 

 

As seen in the tables above, model calibration for the Upper SAR Watershed Model shows good to very 
good performance at all of the streamflow gages from 1966 to 2016. 



Upper Santa Ana River Integrated Model - 
Summary Report  Sept-2020 

  
   
 6 

1.6 Integrated SAR Model 

The Integrated SAR Model domain covers an area of approximately 1,389 square miles (888,768 acres) 
with a finite-difference grid consisting of 1,642 rows in the northeast to southwest direction and 
2,243 columns in the northwest to southeast direction. The grid is rotated at 27° clockwise to be 
consistent with the previous SBBA, Rialto-Colton, and Yucaipa Models and minimize the number of model 
cells.  
 
The cell size for the Integrated SAR Model area is 102.5 ft x 102.5 ft – mimicking the high-resolution cell 
size used in the previous Yucaipa, SBBA, and Rialto-Colton models. This cell size is smaller than those used 
in the previous Riverside-Arlington Model (164 ft x 164 ft) and Chino Basin Model (200 ft x 200 ft). The 
purpose of maintaining or enhancing existing model cell size is to preserve the integrity and functionality 
of each of the five individual groundwater flow models. Following model calibration, any of the individual 
models may be “de-coupled” from the Integrated SAR Model and be run as a stand-alone model to assess 
smaller-scale projects within the individual groundwater basins.  
 
Active and inactive model cells of the Integrated SAR Model were assigned according to the designation 
used by the existing individual models. These active/inactive areas were based on published groundwater 
basin boundaries and geologic mapping. Active model cells generally represent high-permeability, water-
bearing basin fill materials (e.g., alluvium) while inactive, or no-flow, cells represent bedrock or low-
permeability, consolidated sedimentary material. 
 
The Integrated SAR Model consists of five model layers: 
 

• Model Layer 1: Shallow river, wash, and axial-channel deposits present in distinct channels, very 
young and young alluvial deposits, and the upper portion of old and very old 
alluvial deposits. 

• Model Layer 2: Old and very old alluvial deposits and Live Oak Canyon deposits (Yucaipa Basin). 

• Model Layer 3: Old and very old alluvial deposits and Live Oak Canyon deposits (Yucaipa Basin). 

• Model Layer 4: Old and very old alluvial deposits and Live Oak Canyon deposits (Yucaipa Basin). 

• Model Layer 5: Old and very old alluvial deposits, Live Oak Canyon deposits (Yucaipa Basin), and 
Fernando Group (Chino Basin). 

 

1.6.1 Aquifer Parameters 

The original development of aquifer parameters in the individual groundwater models is discussed in the 
previous modeling reports for each model area. Since the development of a groundwater model for the 
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Chino Basin area was included in the scope of the development of the Integrated SAR Model, the 
establishment of initial aquifer parameters in this area is outlined in Section 6.0. During the model update 
and integration process, the aquifer parameters for the previous groundwater models were modified 
through individual model calibration. These updated values were then used as initial values for the 
Integrated SAR Model calibration. During model calibration, these initial values were refined through 
iterative manual adjustments within pre-established upper and lower bounds in order to minimize the 
residuals between measured and model-calculated groundwater levels. 
 

1.6.2 Recharge and Discharge Terms 

Model recharge and discharge components, along with the MODFLOW package used to simulate each 
water budget term, are summarized in Table 1-3 below. 
 

Table 1-3. Summary of Recharge and Discharge Terms for the Integrated SAR Model 

Term Model Package 

Re
ch

ar
ge

 

Recharge from Mountain Front Runoff Well Package  

Areal Recharge from Precipitation Recharge Package 

Streambed Percolation Streamflow Routing Package 

Artificial Recharge Well Package 

Anthropogenic Return Flow Well Package and Recharge Package 

Underflow Inflow Well Package 

Di
sc

ha
rg

e Evapotranspiration Evapotranspiration Package 

Groundwater Pumping Well Package 

Rising Water Discharge to Streamflow Streamflow Routing Package and Drain 

 

1.6.3 Model Calibration 

Calibration is the process of adjusting model parameters to produce the best-fit between simulated and 
observed groundwater system responses. Initial model parameters were based on the updated existing 
individual models. These values were further adjusted to better match historical observations of 
groundwater levels and streamflow. The Integrated SAR model calibration consisted of: 
 

• Initial condition simulation (1966), and  

• Transient calibration (monthly stress periods from 1966 through 2016). 
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The Integrated SAR Model was calibrated against 108,502 measurements of groundwater level in 879 
calibration wells, as well as streamflow at three gaging stations within the groundwater basin. During the 
course of the project, 164 calibration runs were made to arrive at the calibrated parameter set. 
 

1.6.3.1 Initial Condition Simulation 

The Integrated SAR Model calibration included an initial condition simulation, or model spin-up period, 
with model input from January of 1966. The goal of the initial condition model run was to develop a 
numerically stable initial condition, in good agreement with observed water levels, for the beginning of 
the transient calibration run. Results of the initial condition simulation are summarized below. 
 

Table 1-4. Summary of Initial Condition Model Simulation Results 

Statistic Integrated SAR Model 

Mean Residual -1.00 ft 

Minimum Residual -73.81 ft 

Maximum Residual 223.76 ft 

RMSE 38.68 ft 

Relative Error 2.2% 

NSE 0.99 

R2 0.99 

 

1.6.3.2 Transient Calibration 

The transient calibration run for the Integrated SAR Model covers the period from 1966 through 2016 
with monthly stress periods. The goal of the transient model calibration was to produce model-calculated 
water level and streamflow measurements that match observed water levels and historical streamflow at 
locations within the model domain. Analysis of model water budget, water level hydrographs, and 
residuals was conducted after each model calibration run to assess the effects of changes made to model 
parameters. Parameter values adjusted during the calibration included hydraulic conductivity, 
storativity/specific storage, specific yield, hydraulic flow barrier conductance, and streambed 
conductance. 
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1.6.3.2.1 Groundwater Elevations 

The transient model calibration process used 108,502 water level measurements from 879 calibration 
target wells from which to match model-calculated water levels against observed measurements. 
Calibration statistics are summarized in the following table. 
 

Table 1-5. Summary of Integrated SAR Model Transient Model Calibration Statistics – All Layers 

Statistic Integrated SAR Model 

Mean Residual 1.67 ft 

Minimum Residual -289.49 ft 

Maximum Residual 409.88 ft 

RMSE 62.81 ft 

Relative Error 1.7% 

NSE 0.99 

R2 0.99 

 
In general, the measured and model-calculated heads compared favorably, and the calibration is further 
supported by a low relative error 1.7%. In addition, no large changes in the quality of the model calibration 
are observed between the beginning, middle, and end of the model period. 
 
The model active area is approximately 505 square miles or 322,925 acres. Some areas within the model 
domain exhibit more error than others. In general, under-simulation of water levels at basin boundaries 
is more likely. Uncertainty regarding boundary inflows, model layer thickness, and hydraulic properties at 
the boundaries of the groundwater model also contribute to error at the model boundaries. Another 
contributing factor to larger residuals in upgradient wells (and also one of the reasons for considering 
relative error as a calibration metric) is that water levels that exhibit a larger degree of natural variability 
are also inherently harder to simulate or predict, and are subject to a greater range of natural change and 
thus, error. Secondly, some water levels may represent pumping conditions or perched conditions, and 
as such, are not representative of regional groundwater levels. Some differences between model-
simulated and measured values are also potentially due to model cell size (102.5 ft by 102.5 ft) being 
larger than the local scale of observation. Residuals tend to be lower in the center of the basin, where 
geologic observations are more numerous and regional hydraulic properties and gradients are better 
defined.  
 
Overall, the calibration results indicate that the standard of calibration achieved in the Integrated SAR 
Model is suitable for the scale and purpose for which it was developed. Of approximately 108,500 
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observations, over 41,000 (38%) fell within +/- 20 ft of the observed water level while over 82,000 (76%) 
fell within +/- 60 ft. Errors were found to be generally randomly distributed in space and time, with the 
exception of the anomalies noted herein. 
 
The model calibration performance for the individual basin model area is summarized in the following 
tables. 
 

Table 1-6. Summary of Transient Model Calibration Statistics – Yucaipa Basin Model Area 
(All Model Layers) 

Statistic 

Previous Model 
(GEOSCIENCE, 2017) 
1998-2015 Monthly 

Stress Period 

Integrated SAR Model 
1966-2016 Monthly Stress Period 

Individual Model 
(TM No. 1) 

Integrated SAR Model 

Mean Residual 5.40 ft 27.51 ft 43.93 ft 

Minimum Residual NA -264.34 ft -229.19 ft 

Maximum Residual NA 397.00 ft 359.01 ft 

RMSE 64.52 ft 74.27 ft 79.01 ft 

Relative Error 2.9% 2.9% 3.1% 

NSE NA  NA 0.95 

R2 NA NA 0.96 

 
 

Table 1-7. Summary of Transient Model Calibration Statistics – SBBA Model Area (All Model Layers) 

Statistic 

Previous Model 
(Stantec and 
GEOSCIENCE) 

1983-2015 Monthly 
Stress Period 

Integrated SAR Model 
1966-2016 Monthly Stress Period 

Individual Model 
(TM No. 1) 

Integrated SAR Model 

Mean Residual 11.14 ft 8.61 ft -20.08 ft 

Minimum Residual NA -320.86 ft -289.49 ft 

Maximum Residual NA 362.32 ft 363.80 ft 

RMSE 64.16 ft 64.57 ft 62.69 ft 

Relative Error 3.5% 3.5% 3.4% 

NSE NA NA 0.94 

R2 NA NA 0.96 
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Table 1-8. Summary of Transient Model Calibration Statistics – Rialto-Colton Basin Model Area 
(All Model Layers) 

Statistic 

Previous Model 
(GEOSCIENCE, 2015) 

1945-1969 Annual Stress 
Period, 1970-2014 Monthly 

Stress Period 

Integrated SAR Model 
1966-2016 Monthly Stress Period 

Individual Model 
(TM No. 1) 

Integrated SAR Model 

Mean Residual -6.66 ft -1.06 ft 19.36 ft 

Minimum Residual NA -176.99 ft -112.68 ft 

Maximum Residual NA 351.79 ft 290.71 ft 

RMSE 69.40 ft 59.52 ft 54.21 ft 

Relative Error 6.2% 5.7% 5.2% 

NSE NA NA 0.93 

R2 NA NA 0.96 

 
 
Table 1-9. Summary of Transient Model Calibration Statistics – Riverside-Arlington Basin Model Area 

(All Model Layers) 

Statistic 

Previous Model (WRIME 2010) 
1965-2007 Monthly Stress Period 

Integrated SAR Model 
1966-2016 Monthly Stress Period 

Calibration 
(1965-2005) 

Validation 
(2006-2007) 

Individual Model 
(TM No. 1) 

Integrated SAR 
Model 

Mean Residual 12.10 ft 13.20 ft -0.37 ft 4.69 ft 

Minimum Residual NA NA -63.12 ft -67.78 ft 

Maximum Residual NA NA 69.95 ft 82.30 ft 

RMSE 16.00 ft 11.80 19.29 ft 23.85 ft 

Relative Error 5.0% 5.0% 6.3% 8.3% 

NSE NA NA  NA 0.87 

R2 NA NA NA 0.89 
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Table 1-10. Summary of Transient Model Calibration Statistics – Chino Basin Model Area 
(All Model Layers) 

Statistic 

Previous Model (WEI, 2015) 
1961-2011 Quarterly Stress Period 

Integrated SAR Model 
1966-2016 Monthly Stress Period 

Calibration Wells Validation Wells Individual Model 
(TM No. 1) 

Integrated SAR 
Model 

Mean Residual 0.50 ft -8.64 ft 17.86 ft 1.19 ft 

Minimum Residual -238.56 ft NA -244.67 ft -262.44 ft 

Maximum Residual 153.85 ft NA 673.83 ft 409.88 ft 

RMSE 25.38 ft NA 58.93 ft 33.46 ft 

Relative Error NA NA 5.2% 3.0% 

NSE NA NA  NA 0.92 

R2 NA NA NA 0.93 

 
 

Table 1-11. Transient Model Calibration Statistics – Prado Basin Area (All Model Layers) 

Statistic 
Integrated SAR Model 

1966-2016 Monthly Stress Period 

Mean Residual 0.77 ft 

RMSE 5.71 ft 

Relative Error 11.6% 

NSE 0.88 

R2 0.89 

 

1.6.3.2.2 Underflow across Basin Boundaries 

In contrast to the previous individual groundwater models, the Integrated SAR Model explicitly simulates 
underflow between adjacent groundwater basins for the first time. Instead of treating boundary inflows 
between groundwater basins as boundary conditions, the boundaries between adjacent groundwater 
basins were removed – allowing the groundwater model to solve for underflow across basin boundaries. 
Groundwater flow across basin boundaries was computed from the cell-by-cell groundwater flow output 
from the groundwater model simulation, and is summarized in the following table. 
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Table 1-12. Summary of Underflow across Basin Boundaries 

Basin 
Underflow 
[acre-ft/yr] 

Underflow from Yucaipa Basin to the SBBA 
Yucaipa Basin Model (GEOSCIENCE, 2017) 3,500 

SBBA Model (GEOSCIENCE, 2009) 4,100 
Integrated SAR Model 7,900 

Underflow from Bunker Hill Basin to Rialto-Colton Basin 
SBBA Model (GEOSCIENCE, 2009) 3,800 

Rialto-Colton Basin Model (GEOSCIENCE, 2015) 4,000 
Integrated SAR Model 4,060 

Underflow from Lytle Basin to Rialto-Colton Basin 
SBBA Model (GEOSCIENCE, 2009) 2,000 

Rialto-Colton Basin Model (GEOSCIENCE, 2015) 14,100 
Integrated SAR Model 14,550 

Underflow from Rialto-Colton Basin to Riverside Basin 
Rialto-Colton Basin Model (GEOSCIENCE, 2015) 17,900 

Riverside-Arlington Model (WRIME, 2010) 25,400 
Integrated SAR Model 16,370 

Underflow from Riverside Basin to Chino Basin 
Riverside-Arlington Model (WRIME, 2010) 2,800 
Chino Basin Model (GEOSCIENCE, 2018a) 11,300 

Integrated SAR Model 16,310 

 

1.6.3.2.3 Streamflow 

Results of the streamflow calibration at the three gaging stations used for calibration are summarized in 
the following table. Performance is based on the suggested criteria by Donigian (2002). 
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Table 1-13. Summary of Integrated SAR Model Results – Monthly Simulated Streamflow Performance 

Gaging Station 

Avg. 
Observed 

Flow 
[cfs] 

Avg. Model-
Simulated 

Flow 
[cfs] 

Mean 
Residual 

[cfs] 

Mean Residual 
as % of Avg. 

Observed Flow 
NSE R2 Performance 

Santa Ana River at E 
Street 75.9 86.4 -10.5 -14% 0.80 0.84 Good 

Santa Ana River at 
MWD Crossing 130.5 108.2 22.3 17% 0.74 0.82 Good 

Santa Ana River into 
Prado Dam 274.7 290.5 -15.8 -6% 0.79 0.93 Very Good 

 

In general, the model is able to reproduce similar streamflow dynamics seen in observed measurements. 
 

1.6.3.2.4 Water Balance 

Groundwater budgets for the individual basin areas summarize all inflow and outflow terms. As outlined 
previously, inflow terms to the Integrated SAR Model include mountain front runoff, underflow inflow 
from adjacent groundwater basins, artificial recharge in spreading basins, areal recharge of precipitation, 
anthropogenic return flow from applied water, and streambed percolation. Discharge terms include 
groundwater pumping, evapotranspiration from groundwater, and rising water discharge to streamflow. 
The difference between the total inflow and total outflow equals the change in groundwater storage. The 
annual change in groundwater storage for each basin area is summarized below.  
 

Table 1-14. Summary of Average Annual Change in Groundwater Storage 

Basin 
Average Annual Change 
in Groundwater Storage 

[acre-ft/yr] 

Yucaipa Basin -1,980 

SBBA -8,010 

Rialto-Colton Basin 250 

Riverside-Arlington Basin -3,330 

Chino Basin -16,260 

Temescal Basin -1,310 

Prado Basin -180 
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1.6.3.2.5 Cumulative Change in Groundwater Storage 

Many of the basin areas have cumulative change in groundwater storages that respond to changes in 
hydrologic conditions (i.e., wet and dry periods cause rises and declines in groundwater storage, 
respectively). Basin response to hydrology is greatest in the SBBA, and generally diminishes in basins with 
increasing distance from mountain front recharge sources.  
 
It appears that the Integrated SAR Model tends to over-estimate groundwater declines in the SBBA during 
the latter part of the model simulation period since the model-calculated cumulative change in 
groundwater storage declines at a faster rate during the last 15 years of simulation than the cumulative 
change in storage calculated by the groundwater level method. The greater cumulative decline in 
groundwater storage calculated by the Integrated SAR Model is likely due to the large amount of 
underflow from Lytle Basin to the Rialto-Colton Basin. This over-estimation in cumulative storage decline 
can be corrected through future work on the model calibration. 
 

1.7 Predictive Scenarios 

Predictive scenarios were run using the calibrated Integrated SAR Model to evaluate the effects of 
proposed HCP covered activities and other basin management strategies on riparian habitat, groundwater 
levels, and streamflow. Each model run was developed through collaboration and consultation with the 
TAC and HCP Team. The general scenario categories include: 
 

• Scenario 1: Evaluate Flow in the SAR and Identify Factors that May be Causing Reduced Flows 
• Scenario 2: Evaluate the Proposed HCP Activities with Hydrologic Effects 
• Scenario 4: Evaluate Groundwater Management Activities and Changes in Groundwater Pumping 

 
The scenario runs simulate various project effects individually or in combination to assess hydrologic 
responses in comparison to the baseline (no project) scenario, Scenario 2a. This allowed project impacts 
to be isolated. For each scenario run, model-predicted flow and groundwater impacts were evaluated, 
including water level and water budgets for each groundwater basin (e.g., evapotranspiration and 
underflow across each groundwater basin). In Scenario 2, time history of water levels, water budgets and 
streamflow were compared to a baseline, no project condition simulation to estimate impacts attributable 
to individual HCP Covered Activities or combinations of HCP Covered Activities. In addition, this 
information was provided to the Environmental Impact Report (EIR) team for them to establish thresholds 
of significance. 
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1.8 Uses and Limitations 

The Integrated SAR Model, an integrated surface water model (HSPF) and groundwater flow model 
(MODFLOW), was constructed as a management tool for the Upper Santa Ana Valley Basin to assess the 
effects of various projects, including the Habitat Conservation Plan “Covered Activities.” As a management 
tool, the model is intended to be used to inform the decision-making process.  
 
The Integrated SAR Model has combined previous modeling efforts and knowledge base in the Upper 
Santa Ana Valley Basin into one model. The Integrated SAR Model added key components to the unified 
numerical model that were absent or not contiguous in previous models to allow the simulation of 
streamflow and evapotranspiration for the purpose of assessing the effect of various projects on flows 
and riparian habitat in the Upper Santa Ana River. Calibration of the model was conducted with a focus 
on time-history matching of streamflow and groundwater levels in Upper Santa Ana River.  
 
An understanding of the intended uses of the model and limitations and uncertainties associated with 
modeling results is key to interpreting modeling results and informing the decision-making process. The 
results of the modeling scenarios provided in this report are meant to serve as an indication of anticipated 
effects from proposed HCP covered activities and should be verified with field observations. As outlined 
in the Draft Final Upper Santa Ana River Wash Habitat Conservation Plan (ICF, 2019), the HCP includes a 
compliance monitoring and reporting program to measure and respond to potential project impacts. 
 
The model is not intended to exactly predict water levels or streamflow beyond a level that could be 
reasonably anticipated from the residual statistics. The goal of the calibration process is to minimize the 
difference between observed and simulated water levels and streamflow. Minimization of these errors 
through calibration should not be interpreted as an absence of uncertainty or error. Model calibration 
was directed at addressing observed biases in the model-simulated water levels and streamflow, and 
additional focus was placed on areas of interest in the vicinity of the SAR.  
 
One goal of this report is to characterize the magnitude, spatial, and temporal distribution of residuals in 
the model. This information can guide future applications of the model and indicate if additional 
calibration in a given area of interest is warranted. As the model is applied in different applications, an 
assessment of the calibration and suitability for the intended purpose should be conducted prior to using 
the model. 
 

1.9 Future Work 

The Integrated SAR Model is the first integration of pre-existing, individual numerical groundwater 
(MODFLOW) models in the Upper Santa Ana River Basin. Future work with the Integrated SAR Model on 



Upper Santa Ana River Integrated Model - 
Summary Report  Sept-2020 

  
   
 17 

additional applications is anticipated and ongoing refinement and improvement of areas of interest 
throughout the model is expected. Improvements or additional work in specific areas of interest can be 
incorporated back into the Integrated SAR Model. Potential future work includes: 
 

• Development of individual basin models from the larger Integrated SAR Model to reduce 
simulation time or refine localized conditions; 

• Development of solute transport modeling capability in the Integrated SAR Model to help identify 
and manage water quality (e.g., TDS and TIN) in the Upper SAR, excluding Chino Basin; 

• Additional calibration in the Yucaipa Groundwater Basin to resolve higher residuals from 
hydrogeologic complexity; and 

• Refinement/standardization of flux terms (e.g., areal recharge, return flow, mountain front 
runoff) throughout the model domain, which currently follow existing methodologies from 
previous modeling efforts. 
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